Key parameters to estimate the clear-sky OLR over tropical regions: Simple models and their evaluation

R. Guzman, L. Picon, R. Roca LMD, CEET team, N. Gif, O. Chomette, P. Raberanto

Outline

- I Introduction
 - I.1 State of the art
 - I.2 Motivation
- II Radiative transfer tool: Modtran
 - II.1 Idealized atmospheres, starting assumptions
 - II.2 Surface emissivity impacts over the IR radiation
- III Statistical approach : Satellite data
 - III.1 Available data sets
 - III.2 Multi-linear regression
- IV Conclusions et perspectives

Introduction (1/3)

I.1 – State of the art

- Infrared (IR) Outgoing Longwave Radiation (OLR) is strongly correlated to Surface Temperature (Ts) over the whole globe (*Allan et al.* 1999).
- In the tropical regions, moist plays a major role on OLR as well, particularly on its variability (*Buehler et al.2004*). OLR is mainly sensitive to the mid-upper tropospheric humidity (*Spencer et Braswell 1997*, *Allan et al. 1999*).

Introduction (2/3)

I.1 – State of the art

- In the tropics there are surfaces with low emissivities in the IR (~0.85), mainly the deserts, and that are not accurately estimated (*Zhang et al.2007*).
- Evaluate if the blackbody emissivity approximation can yield systematic errors that should be taken into account for the IR radiation estimates.

Introduction (3/3)

I.2 – Motivation

Clear-sky greenhouse effect

- To understand and estimate the clear-sky greenhouse effect over the tropics
- Create a simple model of Ga to evaluate the impact of different kind of changes on the key variables of Ga or OLR.

Two complementary ways to achieve that:

- Idealized study cases with the Modtran model
- Statistical approach with satellite data

$$Ga = LW_{S\uparrow} - OLR$$

Modtran (1/3)

II.1 – Idealized atmospheres, starting assumptions

- Two humidity layers:the Boundary Layer(BL) and the FreeTroposphere (FT) layer.
- All other atmospherical parameters are from the McClatchey tropical standard profile (McClatchey et al.1971)
- There is a 3% difference in the OLR (11 W/m²) for the driest atmosphere.

Modtran (2/3)

II.2 – Surface emissivity impacts over the IR radiation

OLR jacobians with respect to RH for the two types of surfaces

+1% perturbations in RH over 10 hPa thick layers

Differences between the two surfaces appear in the lower part of the atmosphere

Modtran (3/3)

II.2 – Surface emissivity impacts over the IR radiation

For desert-like surfaces:

- Linear increase of the surface upward IR flux for greater RH perturbations
- The slope gets bigger if the perturbed layer gets closer to the surface
- We plot the LW_up surface flux jacobian with respect to RH perturbations

Satellite data (1/6)

III.1 – Available data sets

- CERES SSF - 07/2002-06/2003 (AQUA)

We take from this data sets the following products : **OLR** and **Ts**

- **FTH BISAT** – 2000-2005 (2 x METEOSAT)

FTH estimate, every 3 hours, over the bisat region (60°W-120°E, 40°S-40°N) (water vapour band product, METEOSAT (*Brogniez et al.2006*))

Satellite data (2/6)

III.1 – Available data sets

Night OLR data

We plot the OLR computed by Modtran with radiosonde humidity profiles vs CERES OLR (space time coincidence: 1°*1°, two hours time bin).

The « best » OLR estimate, vertically and spectrally resolved

Satellite data (3/6)

III.2 – Multi-linear regression

We focus on the JJA season, 25°S-35°N and night measurements of OLR

We fit the OLR with the following model:

$$OLR = a \cdot \sigma \cdot T_S^4 + b \cdot \ln(FTH) + c$$

Ocean fit vs data (top)

Mean of the difference between the fit and the data (bottom)

Satellite data (4/6)

III.2 – Multi-linear regression

Satellite data (4/6)

III.2 – Multi-linear regression

Satellite data (5/6)

III.2 – Multi-linear regression

Mean of the selected data: OLR (left), Ts (centre) and FTH (right). The highest OLRs do not correspond to the highest temperatures

Problem for the two-parameter model to estimate the highest OLRs (right cluster, day data)

Satellite data (6/6)

III.2 – Multi-linear regression

Correlation coefficients between each variable and the OLR (night)

R: linear correlation coefficient between the FIT and the DATA

Stddev: standard deviation of the FIT-DATA

	Correlation coefficients				
Surface type	$\sigma \cdot T_S^4$	ln(FTH)	ln(PWAT)	R^2	stddev
Ocean	-0.009	-0.820	-0.540	0.765	4.378
Land	0.572	-0.643	-0.090	0.775	5.816
Desert	0.099	-0.790	0.327	0.693	5.135

The two-parameter model reproduces the OLR with almost the same precision than the vertically and spectrally resolved model

Conclusions

- Surface emissivity has to be taken into account when it is low, particularly in the « window » region
- Systematic errors can reach 10 W/m² and get bigger for higher temperatures, lowest emissivities and drier boundary layers
- The two-parameter statistical model is almost as good as a « complete » vertical and spectral model

Perspectives:

- Identify the reasons of the bias
- Improve the statistical model
- study the variability of OLR and Ga within this statistical model

1.00

Modtran

Desertic surface emissivity spectrum from the Modtran model. We highlight the particularly low emissivity values in the atmospheric window, between 8 and 12 µm.

0.95
0.90
0.85
0.80
0.75
0.70
5
10
lambda (micron)

The bulk of the most intense emissions for Ts close to 300 K are in the window part of the spectrum.

Modtran

Over desert-like emissivity surfaces:

- Ts variations have a major impact on the amount of emission in the atmospheric window
- OLR jacobian becomes positive for RH perturbations in the low layers of the atmosphere
- Emissivity should be taken into acount for low emissivity surfaces, otherwise error of 10 W/m² or more could be done on the OLR estimate

$$LW_{S\uparrow} \approx (1 - \varepsilon) \cdot LW_{A\downarrow}(BLH, T_A) + \varepsilon \cdot \sigma \cdot T_S^4$$

$$OLR \approx f(LW_{S\uparrow}, FTH)$$

Regression

Regression

Regression

